Теория была выдвинута в 1969 году американскими психологами Стэнли Милгрэмом и Джеффри Трэверсом. Предложенная ими гипотеза заключалась в том, что каждый человек опосредованно знаком с любым другим жителем планеты через недлинную цепочку общих знакомых. В среднем эта цепочка состоит из шести человек.
Милгрэм опирался на данные эксперимента в двух американских городах. Жителям одного города было роздано 300 конвертов, которые надо было передать определенному человеку, который жил в другом городе. Конверты можно было передавать только через своих знакомых и родственников. До бостонского адресата дошло 60 конвертов. Произведя подсчеты, Милгрэм определил, что в среднем каждый конверт прошел через шесть человек. Так и родилась теория «шести рукопожатий».
Повторили эксперимент Милгрэма при помощи электронной почты ученые кафедры социологии Колумбийского университета. Тысячам добровольцев они предложили «достучаться» до 20 засекреченных человек, о которых сообщали лишь основные характеристики: имя, фамилию, род занятий, место жительства, образование. Первой успешной попыткой стало определение почтового адреса одного из таких «засекреченных» в Сибири. Доброволец из Австралии нашел адрес сибирской «цели» при помощи всего четырех сообщений!
Анализ экспертами Microsoft данных, полученных за месяц общения 242 720 596 пользователей, занял два года. Объем исследуемых данных составил около 4,5 терабайт. На этой базе данных было установлено, что каждый из 240 миллионов пользователей сервиса мог бы «дойти» до другого в среднем за 6,6 «шага». Чем исследователи математически доказали теорию и расхожую шутку о том, что через пять человек каждый из нас знаком с английской королевой.
Между прочим, на основе теории «тесного мира» возникло и множество популярных в США игр. Например, ученые играют в «Число Эрдёша». Венгерский математик Пол Эрдёш — один из крупных учёных ХХ века, имеющий огромное число работ, написанных в соавторстве. Нужно найти кратчайшую цепочку от него до другого известного учёного. Если он написал какую-нибудь работу вместе с Эрдёшом, то число Эрдёша у него равно единице. Если в соавторстве с тем, кто, в свою очередь, написал что-нибудь с Полом Эрдёшом, то это число у него равняется двум и т. д. Почти все нобелевские лауреаты имеют небольшие числа Эрдёша.
Источник: http://wehelpyou.ucoz.ua/load/fakty/teorija_shesti_rukopozhatij/1-1-0-467 |