Расщепление признаков у гибридов второго поколения. Второй закон Менделя.Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 2001 зеленое и 6022 желтых семян. Таким образом, 3/4 семян гибридов второго поколения имели желтую окраску и 1/4 — зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3:1. Такое явление он называл расщеплением признаков.
Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой второй закон — закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения, наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти — доминантный.
Гомозиготные и гетерозиготные особи. Для того чтобы выяснить, как будет осуществляться наследование признаков при самоопылении в третьем поколении, Мендель вырастил гибриды второго поколения и проанализировал потомство, полученное от самоопыления. Он выяснил, что 1/3 растений второго поколения, выросших из желтых семян, при самоопылении производила только желтые семена. Растения, выросшие из зеленых семян, давали только зеленые семена. Оставшиеся 2/3 растений второго поколения, выросшие из желтых семян, давали желтые и зеленые семена в отношении 3:1. Таким образом, эти растения были подобны гибридам первого поколения.
Итак, Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных (от греч. «гомос» — равный, «зигота» — оплодотворенная яйцеклетка). Особи, в потомстве у которых обнаруживается расщепление, назвали гетерозиготными (от греч. «гетерос» — другой).
Причина расщепления признаков у гибридов. Какова причина расщепления признаков в потомстве гибридов? Почему в первом, втором и последующих поколениях возникают особи, дающие в результате скрещивания потомство с доминантными и рецессивными признаками? Обратимся к схеме, на которой символами записаны результаты опыта по моногибридному скрещиванию. Символы Р, F1, F2 и т. д. обозначают соответственно родительское, первое и второе поколения. Значок X означает скрещивание, символ обозначает мужской пол (щит и копье Марса), — женский пол (зеркало Венеры).
Ген, отвечающий за доминантный желтый цвет семян, обозначим большой буквой, например А; ген, отвечающий за рецессивный зеленый цвет, — малой буквой а. Поскольку каждая хромосома представлена в соматических клетках двумя гомологами, каждый ген также присутствует в двух экземплярах, как говорят генетики, в виде двух аллелей (см. § 27). Буква А обозначает доминантный аллель, а а — рецессивный.
Схема образования зигот при моногибридном скрещивании такова:
где Р — родители, F1 — гибриды первого поколения, F2 — гибриды второго поколения.
Для дальнейших рассуждений необходимо вспомнить основные события, происходящие в мейозе. В первом делении мейоза происходит образование клеток, несущих гаплоидный набор хромосом (n). Такие клетки содержат только одну хромосому из каждой пары гомологичных хромосом, в дальнейшем из них образуются гаметы. Слияние гаплоидных гамет при оплодотворении ведет к образованию диплоидной (2n) зиготы. Процесс образования гаплоидных гамет и восстановление диплоидности при оплодотворении обязательно происходит в каждом поколении организмов, размножающихся половым способом.
Исходные родительские растения в рассматриваемом опыте были гомозиготными. Следовательно, скрещивание можно записать так: Р (АА х аа). Очевидно, что оба родителя способны производить гаметы только одного сорта, причем растения, имеющие два доминантных гена АА, дают только гаметы, несущие ген А, а растения с двумя рецессивными генами аа образуют половые клетки с геном а. В первом поколении F1 все потомство получается гетерозиготным Аа и имеет семена только желтого цвета, так как доминантный ген А подавляет действие рецессивного гена а.
Такие гетерозиготные растения Аа способны производить гаметы двух сортов, несущие гены А и а. При оплодотворении возникают четыре типа зигот — АА + Аа + аА + аа, что можно записать как АА + 2Аа + аа. Поскольку в нашем опыте гетерозиготные семена Аа также окрашены в желтый цвет, в F2 получается соотношение желтых семян к зеленым, равное 3:1. Понятно, что 1/3 растений, которые выросли из желтых семян, имеющих геныАА, при самоопылении снова дает только желтые семена. У остальных 2/3 растений с генами Аа, так же как у гибридных растений из F1, будут формироваться два разных типа гамет, и в следующем поколении при самоопылении произойдет расщепление признака окраски семян на желтые и зеленые в соотношении 3:1.
Таким образом было установлено, что расщепление признаков в потомстве гибридных растений — результат наличия у них двух генов — А и а, ответственных за развитие одного признака, например окраски семян.
При скрещивании гибридов первого поколения (гетерозиготных особей) получается следующий результат:
Р (F1): Аа × Аа
жёл. жёл.
G: А а А а
F2: АА Аа Аа аа
жёл. жёл. жёл. зел.
Расщепление по фенотипу в F2 наблюдается в отношении 3:1 (три части потомков с жёлтыми семенами и одна часть – с зелёными).
По генотипу расщепление: 1АА (1 часть – жёлтые гомозиготы): 2Аа (2 части желтые гетерозиготы): 1аа (одна часть – зелёные гомозиготы).
На основании результатов расщепления второго поколения при моногибридном скрещивании был сформулирован второй закон наследования.
Второй закон Менделя – закон расщепления:
при скрещивании гибридов второго поколения наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.